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Abstract

The weak joint bending (unbonded contact without friction) of the stack of slim non-uniform curved beams (leaves)

with rectangular cross-sections is considered. Each leaf has one end clamped and the other free. The leaves have the

same widths and different lengths (the lengths decrease upwards). The given loading is applied (upwards) to the lower

leaf. This structure is the model of a leaf spring. The basic problem is to find the shapes of the leaves under bending.

This problem is reduced to the problem of finding the densities of the forces of interaction between the leaves. The

accurate formulation of the latter problem is propounded. The uniqueness of the solution of the problem is proved. The

analytical solution is constructed in the special case of two uniform straight leaves.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The leaf springs are widely used in the motor industry (Reimpell, 1986). They are also used in biome-

chanics––in different foot prostheses designs (Rudakov et al., 1997; Geil et al., 1999). The basic problem of

the leaf springs theory is to find the shapes of the leaves under bending. If the shapes are known, the stresses

can be calculated, and the different leaf spring optimization problems can be solved.

The simplest model of the leaf spring used to solve the basic problem is the stack of slim curved beams
(leaves) with rectangular cross-sections. The leaves fit each other closely (without loading). There is no

friction between the leaves. Each leaf has one end clamped and the other free (Fig. 1). All leaves have the

same widths (in the direction perpendicular to the plane of Fig. 1). The given loading is applied perpen-

dicular to the lower leaf (Fig. 1); the loading is uniform across the leaf (in the direction perpendicular to the

plane of Fig. 1) but (generally speaking) it is not uniform along the leaf. The leaves undergo weak joint

bending (with unbonded frictionless contact). The corresponding contact problem is not investigated

enough. The present study propounds the accurate and general formulation of this problem. We start our

analysis considering the model of one-leaf spring bending. In Section 3 the problem of the joint spring
leaves bending is formulated. The uniqueness of the solution of the problem (in the general formulation) is
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proved in Section 4. The analytical solution of the problem in the simplest special case is constructed in

Section 5. Finally we give an illustration of the solution procedure for a practical case (the calculation of the
deflection of the foot prosthesis elastic element).

2. The model of one-leaf spring bending

At first consider a one-leaf spring (Fig. 2). The natural shape of the leaf is described by the function uðxÞ,
where x is the arc-length of the leaf segment placed between the clamped point O and some arbitrary point

A; u is the angle between the tangents to the leaf profile at these points (Fig. 2); 06 x6 ‘; ‘ is the given

overall leaf arc-length. It is assumed below that the function uðxÞ is continuous, piecewise continuously

differentiable, non-decreasing, and uðxÞ < p=2 for 06 x6 ‘. Since uð0Þ ¼ 0, uðxÞP 0. The shape of the leaf

under the load is described by the analogous function ~uuðxÞ. It is assumed that the potential energy stored in

the leaf under bending is

E ¼ 1

2

Z ‘

0

ð~uu0ðxÞ � u0ðxÞÞ2

aðxÞ dx; ð1Þ

where the prime operator means the derivative; aðxÞ is the given bending flexibility of the leaf, which may be

expressed in terms of the Young�s modulus, width and (variable) thickness of the leaf (Ziegler, 1991). The

function aðxÞ is assumed to be continuous and positive for 06 x6 ‘. It is assumed that the bending of

the leaves is weak (linear approximation with respect to the load). In this case the shape of the leaf under
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Fig. 2. The model of a one-leaf spring; the definitions of the functions uðxÞ and yðxÞ.
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Fig. 1. The model of a multi-leaf spring (side-view).
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the load may be defined by the normal displacement yðxÞ (Fig. 2). Let B be the position of the point A of the

leaf under bending. Then yðxÞ is the projection of the vector AB onto the normal to the leaf at the point A.
It is assumed that the load is perpendicular to the leaf (Fig. 3); qlowðxÞ, qupðxÞ are the load densities on the

lower and upper sides of the leaf. If the multiple-leaf spring is considered then this assumption should be
made only for the lower side of the lowermost leaf, where the load is given a priori. For the other surfaces of

the other leaves this load form follows from the absence of friction and the weakness of bending. We

assume that qlowðxÞ, qupðxÞ can be represented in the form of

f ðxÞ þ
X
i

Fidðx� xiÞ; ð2Þ

where f ðxÞP 0 is some piecewise continuous function, which is continuous on the right at x ¼ 0 and on the

left at x > 0; the sum is finite; xi > 0; the concentrated forces Fi P 0; d is the Dirac�s delta function. For

the lower side of the lowermost leaf, formula (2) a priori gives the form of loading. For the other surfaces of

the other leaves, formula (2) is used in the following formulation of the problem.

Using (1), the principle of virtual displacements and the standard calculus of variations techniques

(Lanczos, 1962), one can find that

yðxÞ ¼
Z ‘

0

Gðx; sÞðqlowðsÞ � qupðsÞÞds; ð3Þ

where

Gðx; sÞ ¼
Z minðx;sÞ

0

aðsÞgðs; xÞgðs; sÞds ð4Þ

(Green�s function),

gðs; xÞ ¼
Z x

s
cosðuðxÞ � uðlÞÞdl; ð5Þ

s, s and l are the variables of integrating. Integral of type
R c
b hðsÞdðs� s�Þds (which may be contained in (3)

and in the following analogous formulae) is considered to be equal to hðs�Þ in the cases s� ¼ b or s� ¼ c.

3. The formulation of the problem of the joint spring leaves bending

Consider N P 2 leaves. The length of leaf k is ‘k > 0 and its bending flexibility is akðxÞ; 16 k6N (Fig. 1).

The sequence ‘k is non-increasing one. The loading with the given density qðxÞ (which is of type (2)) is
applied to the lower side of the leaf 1. The shapes of the leaves are described by the functions ykðxÞ
(16 k6N ). It is required to find these functions. In order to solve this problem, it is convenient to

qup(x)

qlow(x)

Fig. 3. The model of a one-leaf spring; the loading of the leaf.
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reformulate it so that to regard the densities fkðxÞ (16 k6N � 1) of the forces of interaction between the

leaves k, k þ 1 as the functions sought for. The functions ykðxÞ are expressed in terms of fkðxÞ as follows
(these formulae result from (3) and the law of equal action and reaction)

ykðxÞ ¼
Z ‘k

0

Gkðx; sÞfk�1ðsÞds�
Z ‘kþ1

0

Gkðx; sÞfkðsÞds; ð6Þ

where 16 k6N and it should be considered that ‘Nþ1 ¼ 0, fN ðxÞ ¼ 0, f0ðxÞ ¼ qðxÞ. The functions Gkðx; sÞ
are obtained by substituting aðxÞ ¼ akðxÞ into (4). It is assumed below that the range of index k is

16 k6N � 1 (unless it is given explicitly). We assume that fkðxÞ are of type (2); it is an a priori assumption

on the leaves interaction. We introduce the notation rkðxÞ ¼ ykþ1ðxÞ � ykðxÞ; then using (6) we find

rkðxÞ ¼ �
Z ‘k

0

Gkðx; sÞfk�1ðsÞdsþ
Z ‘kþ1

0

ðGkðx; sÞ þ Gkþ1ðx; sÞÞfkðsÞds�
Z ‘kþ2

0

Gkþ1ðx; sÞfkþ1ðsÞds: ð7Þ

The conditions of unilateral (unbonded) leaves contact may be expressed by the inequalities: rkðxÞP 0;
besides, if fkðxÞ > 0 then rkðxÞ ¼ 0. Finally we come to the following problem.

Problem. It is required to find fkðxÞ (06 x6 ‘kþ1), which are of type (2) and should satisfy the conditions

rkðxÞ
¼ 0 ðfkðxÞ > 0Þ;
P 0 ðfkðxÞ ¼ 0Þ;

�
ð8Þ

where rkðxÞ are expressed by (7).

4. The proof of the uniqueness of the problem solution

Theorem 1. The Problem may have only the unique solution.

Proof. Let fkðxÞ, f �
k ðxÞ be the solutions of the Problem. The functions rkðxÞ, r�kðxÞ correspond to these so-

lutions according to (7). We introduce the notation qkðxÞ ¼ fkðxÞ � f �
k ðxÞ. Since fkðxÞ, f �

k ðxÞ are of type (2),
qkðxÞ are also of type (2) but f ðxÞ, Fi may be negative. We introduce the notation

e ¼
XN�1

k¼1

Z ‘kþ1

0

ðrkðxÞ � r�kðxÞÞqkðxÞdx:

Then it follows from (8) that e6 0 (either one of the co-factors in the integral is equal to zero or these co-

factors have different signs). On the other hand, using (4), (7) and introducing the notation

JkðxÞ ¼
Z ‘kþ1

x
gðx; sÞqkðsÞds; ð9Þ

we obtain

e ¼
Z ‘2

0

a1ðxÞJ 2
1 ðxÞdxþ

XN�1

k¼2

Z ‘kþ1

0

akðxÞðJk�1ðxÞ
"

� JkðxÞÞ2 dxþ
Z ‘k

‘kþ1

akðxÞJ 2
k�1ðxÞdx

#

þ
Z ‘N

0

aN ðxÞJ 2
N�1ðxÞdx: ð10Þ

It follows from (10) that e P 0. Hence, e ¼ 0. Then, if the above-mentioned properties of qkðxÞ are taken
into account, it can be proved that the functions JkðxÞ are continuous (the simple proofs using the standard
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methods of mathematical analysis are not adduced). Then it follows from (10) and the equality e ¼ 0 that

JkðxÞ � 0. Using (5), (9) and introducing the notation

HkðxÞ ¼
Z ‘kþ1

x
cosðuðsÞ � uðxÞÞqkðsÞds;

we obtain

JkðxÞ ¼
Z ‘kþ1

x
HkðsÞds: ð11Þ

Taking the above-mentioned properties of qkðxÞ into account, one can prove that HkðxÞ are the piecewise
continuous functions, which are continuous on the left for 0 < x6 ‘kþ1 and on the right for x ¼ 0. Then it

follows from (11) and the equality JkðxÞ � 0 that HkðxÞ � 0, i.e. (the variable is denoted as s)

Z ‘kþ1

s
cosðuðsÞ � uðsÞÞqkðsÞds ¼ 0 ð12Þ

for 06 s6 ‘kþ1. Multiplying (12) by u0ðsÞ and integrating over x6 s6 ‘k yieldsZ ‘kþ1

x
sinðuðsÞ � uðxÞÞqkðsÞds ¼ 0: ð13Þ

It follows from (12) and (13) thatZ ‘kþ1

x
cosuðsÞqkðsÞds ¼ 0:

Using this equality and taking the above-mentioned properties of qðxÞ and uðxÞ into account, one can prove

that qðxÞ � 0. Hence, fkðxÞ � f �
k ðxÞ. This proves Theorem 1. �

5. The analytical solution of the Problem in the simplest special case

Consider the special case: N ¼ 2, uðxÞ � 0, a1ðxÞ � a1 ¼ const:, a2ðxÞ � a2 ¼ const: (two straight uni-

form leaves). It follows from (4) and (5) that in this special case

Gkðx; sÞ ¼ aks2ð3x� sÞ=6 ðxP sÞ;
akx2ð3s� xÞ=6 ðx6 sÞ;

�
ð14Þ

for k ¼ 1; 2. We introduce the notations

Wðl; s;KÞ ¼ o

ol
l � s
l � K

� �3
" #

¼ 3ðl � sÞ2ðs� KÞ
ðl � KÞ4

; ð15Þ

UðKÞ ¼ 1

ð‘2 � KÞ2
Z ‘2

K
ð‘2 � sÞ3qðsÞdsþ

Z ‘1

K
ðs� ‘2ÞqðsÞds; ð16Þ

M ¼
Z ‘1

‘2

ðs� ‘2ÞqðsÞdsP 0: ð17Þ

M.A. Osipenko et al. / International Journal of Solids and Structures 40 (2003) 3129–3136 3133



Theorem 2. The solution f1ðxÞ of the Problem in the above-mentioned special case has the following form:

(i) if M ¼ 0 then

f1ðxÞ ¼
a1

a1 þ a2
qðxÞ; ð18Þ

(ii) if Uð0ÞP 0 then

f1ðxÞ ¼ F1dðx� ‘2Þ; ð19Þ
where

F1 ¼
3

ða1 þ a2Þ‘32

Z ‘1

0

G1ð‘2; sÞqðsÞds; ð20Þ

(iii) if Uð0Þ < 0 and M > 0 then

f1ðxÞ ¼ F2dðx� ‘2Þ þ F3dðx� kÞ þ
a1

a1 þ a2
qðxÞ ð06 x6 kÞ;

0 ðk < x6 ‘2Þ;

(
ð21Þ

where

0 < k < ‘2 is the root of the equation UðKÞ ¼ 0; ð22Þ

F2 ¼
a1

ða1 þ a2Þð‘2 � kÞ

Z ‘1

k
ðs� kÞqðsÞds; ð23Þ

F3 ¼
a1

ða1 þ a2Þð‘2 � kÞ

Z ‘1

kþ0

ð‘2 � sÞqðsÞds: ð24Þ

The expression of type b	 0 denotes right-hand or left-hand limit. Note that if qðxÞ in (21) contains the

term of type F0dðx� kÞ then this term is contained in f1ðxÞ (according to non-strict inequality x6 k in (21)).

Proof

(i) Since qðxÞ is of type (2), f1ðxÞ is also of type (2). Prove that conditions (8) are satisfied (here and below

for k ¼ 1). Substituting (18) into (7), one can find that if ‘1 ¼ ‘2 then r1ðxÞ ¼ 0 for 06 x6 ‘2 ¼ ‘1, and if

‘1 > ‘2 then

r1ðxÞ ¼ �
Z ‘1

‘2þ0

G1ðx; sÞqðsÞds: ð25Þ

In the latter case, using (17) and the condition M ¼ 0, one can prove that qðxÞ ¼ 0 for ‘2 < x6 ‘1, hence,
it follows from (25) that in this case again r1ðxÞ ¼ 0 for 06 x6 ‘2. Thus, conditions (8) are satisfied in both

above-mentioned cases.

(ii) It follows from (14) and (20) that F1 P 0. Hence, f1ðxÞ is of type (2). Prove that conditions (8) are

satisfied. Substituting (19) into (7) and using (14)–(16) and (20), one can prove (by means of direct but
somewhat cumbersome calculations) the following representation of the function r1ðxÞ:

r1ðxÞ ¼
a1x2ð‘2 � xÞ

4‘2
Uð0Þ þ a1x3

6

Z ‘2

x
dl

Z l

0

dsWðl; s; 0ÞqðsÞ: ð26Þ

According to (19), the inequality f1ðxÞ > 0 may be valid only at x ¼ ‘2. It follows from (26) that
r1ð‘2Þ ¼ 0. Besides, it follows from (26), (15) and the condition Uð0ÞP 0 that r1ðxÞP 0 for 06 x6 ‘2. Hence,

conditions (8) are satisfied.
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(iii) Prove first of all that the value k is defined correctly, i.e. the existence of the root of Eq. (22) (since the

uniqueness of the solution (21) follows from Theorem 1, it is not necessary to prove the uniqueness of the

root). Using (16) and (17) one can prove that UðKÞ is continuous for 06K < ‘2 and Uð‘2 � 0Þ ¼ M . Since

Uð0Þ < 0 and M > 0, the existence of the root 0 < k < ‘2 is proved. Prove that f1ðxÞ is of type (2). The non-
strict inequality x6 k in (21) provides the continuity on the left for x > 0 of that part of f1ðxÞ, which does not

contain delta functions. Further, it follows from (23) that F2 P 0, and it follows from (16), (22) and (24) that

F3 ¼
a1

ða1 þ a2Þð‘2 � kÞ3
Z ‘2

kþ0

ð‘2 � sÞ3qðsÞds: ð27Þ

Hence, F3 P 0 and f1ðxÞ is of type (2). Prove that conditions (8) are satisfied. Substituting (21) into (7)

and using (14), (15), (22)–(24) and (27), one can prove the following representation of the function r1ðxÞ:

r1ðxÞ ¼
0 ð06 x6 kÞ;
a1ðx� kÞ3

6

Z ‘2

x
dl

Z l

k
dsWðl; s; kÞqðsÞ ðk6 x6 ‘2Þ:

8<
: ð28Þ

According to (21), the inequality f1ðxÞ > 0 may be valid only for 06 x6 k and at x ¼ ‘2. It follows from
(28) that r1ðxÞ ¼ 0 for 06 x6 k and r1ð‘2Þ ¼ 0. Besides, it follows from (28) and (15) that r1ðxÞP 0 for

k6 x6 ‘2. Hence, conditions (8) are satisfied.

Note: If qðxÞ ¼ F0dðx� ‘2Þ then the conditions (i) and (ii) of Theorem 2 are satisfied simultaneously. �

6. An illustration of the solution procedure for a practical case

If a spring with two straight uniform leaves is used as the elastic element of the foot prosthesis then one
of the practical problems is to calculate the deflection d of this elastic element under the given loading

(Rudakov et al., 1997). The results of Section 5 allow one to construct the solution of this practical

problem. In terms of Section 2,

d ¼ y1ð‘1Þ: ð29Þ
Suppose the loading is uniform:

qðxÞ � q0 ¼ const: ð30Þ
Substituting (30) into the formulation of Theorem 2 and introducing the notation

a ¼ ‘2=‘1;

we obtain:

(i) if a ¼ 1 then

f1ðxÞ ¼
a1q0

a1 þ a2
; ð31Þ

(ii) if 0 < a6 2�
ffiffiffi
2

p
then

f1ðxÞ ¼
a1q0‘1ða2 � 4a þ 6Þ

8ða1 þ a2Þa
dðx� ‘2Þ; ð32Þ

(iii) if 2�
ffiffiffi
2

p
< a < 1 then

f1ðxÞ ¼
a1q0‘1ð1� aÞ
2

ffiffiffi
2

p
ða1 þ a2Þ

½ð3þ 2
ffiffiffi
2

p
Þdðx� ‘2Þ þ dðx� kÞ� þ

a1q0
a1 þ a2

ð06 x6 kÞ;
0 ðk < x6 ‘2Þ;

(
ð33Þ

where k ¼ ð1þ
ffiffiffi
2

p
Þ‘2 �

ffiffiffi
2

p
‘1.
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Then it follows from (6), (29) and (31)–(33) that

d ¼ a1q0‘41
8

1

�
� a1
6ða1 þ a2Þ

½að3� aÞða2 � 4a þ 6Þ � b�
�
;

where

b ¼ 0 ð0 < a6 2�
ffiffiffi
2

p
Þ;

ða � 2þ
ffiffiffi
2

p
Þ2ð1� aÞ½8þ 6

ffiffiffi
2

p
� ð5þ 4

ffiffiffi
2

p
Þa� ð2�

ffiffiffi
2

p
6 a6 1Þ:

�

7. Conclusions

The propounded approach to the investigation of the interaction of spring leaves under joint bending

allows one to understand the bending of two straight uniform leaves in full. It is possible to hope that this

approach will lead to determining the interaction pattern of the leaves in more complicated cases.

References

Geil, M.D., Parnianpour, M., Berme, N., 1999. Significance of nonsagittal power terms in analysis of a dynamic elastic response

prosthetic foot. Journal of Biomechanical Engineering 121, 521–524.

Lanczos, C., 1962. The Variational Principles of Mechanics. University of Toronto Press, Toronto.

Reimpell, J., 1986. Fahrwerkttechnik: Radaufh€aangungen. Vogel-Buchverlag, W€uurzburg.

Rudakov, R.N., Osipenko, M.A., Nyashin, Y.I., Kalashnikov, Y.V., Podgaetz, A.R., 1997. Optimization and investigation of the foot

prosthesis operating characteristics. Russian Journal of Biomechanics 1, 1–11.

Ziegler, F., 1991. Mechanics of Solids and Fluids. Springer-Verlag, New York, Vienna.

3136 M.A. Osipenko et al. / International Journal of Solids and Structures 40 (2003) 3129–3136


	A contact problem in the theory of leaf spring bending
	Introduction
	The model of one-leaf spring bending
	The formulation of the problem of the joint spring leaves bending
	The proof of the uniqueness of the problem solution
	The analytical solution of the Problem in the simplest special case
	An illustration of the solution procedure for a practical case
	Conclusions
	References


