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Abstract

The weak joint bending (unbonded contact without friction) of the stack of slim non-uniform curved beams (leaves)
with rectangular cross-sections is considered. Each leaf has one end clamped and the other free. The leaves have the
same widths and different lengths (the lengths decrease upwards). The given loading is applied (upwards) to the lower
leaf. This structure is the model of a leaf spring. The basic problem is to find the shapes of the leaves under bending.
This problem is reduced to the problem of finding the densities of the forces of interaction between the leaves. The
accurate formulation of the latter problem is propounded. The uniqueness of the solution of the problem is proved. The
analytical solution is constructed in the special case of two uniform straight leaves.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The leaf springs are widely used in the motor industry (Reimpell, 1986). They are also used in biome-
chanics—in different foot prostheses designs (Rudakov et al., 1997; Geil et al., 1999). The basic problem of
the leaf springs theory is to find the shapes of the leaves under bending. If the shapes are known, the stresses
can be calculated, and the different leaf spring optimization problems can be solved.

The simplest model of the leaf spring used to solve the basic problem is the stack of slim curved beams
(leaves) with rectangular cross-sections. The leaves fit each other closely (without loading). There is no
friction between the leaves. Each leaf has one end clamped and the other free (Fig. 1). All leaves have the
same widths (in the direction perpendicular to the plane of Fig. 1). The given loading is applied perpen-
dicular to the lower leaf (Fig. 1); the loading is uniform across the leaf (in the direction perpendicular to the
plane of Fig. 1) but (generally speaking) it is not uniform along the leaf. The leaves undergo weak joint
bending (with unbonded frictionless contact). The corresponding contact problem is not investigated
enough. The present study propounds the accurate and general formulation of this problem. We start our
analysis considering the model of one-leaf spring bending. In Section 3 the problem of the joint spring
leaves bending is formulated. The uniqueness of the solution of the problem (in the general formulation) is
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Fig. 1. The model of a multi-leaf spring (side-view).

proved in Section 4. The analytical solution of the problem in the simplest special case is constructed in
Section 5. Finally we give an illustration of the solution procedure for a practical case (the calculation of the
deflection of the foot prosthesis elastic element).

2. The model of one-leaf spring bending

At first consider a one-leaf spring (Fig. 2). The natural shape of the leaf is described by the function ¢(x),
where x is the arc-length of the leaf segment placed between the clamped point O and some arbitrary point
A; ¢ is the angle between the tangents to the leaf profile at these points (Fig. 2); 0 <x < /; £ is the given
overall leaf arc-length. It is assumed below that the function ¢(x) is continuous, piecewise continuously
differentiable, non-decreasing, and ¢(x) < m/2 for 0 <x < 4. Since ¢(0) = 0, ¢(x) = 0. The shape of the leaf
under the load is described by the analogous function @(x). It is assumed that the potential energy stored in
the leaf under bending is

(1)

where the prime operator means the derivative; a(x) is the given bending flexibility of the leaf, which may be
expressed in terms of the Young’s modulus, width and (variable) thickness of the leaf (Ziegler, 1991). The
function a(x) is assumed to be continuous and positive for 0 <x < /. It is assumed that the bending of
the leaves is weak (linear approximation with respect to the load). In this case the shape of the leaf under

Fig. 2. The model of a one-leaf spring; the definitions of the functions ¢(x) and y(x).
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Fig. 3. The model of a one-leaf spring; the loading of the leaf.

the load may be defined by the normal displacement y(x) (Fig. 2). Let B be the position of the point 4 of the
leaf under bending. Then y(x) is the projection of the vector 4B onto the normal to the leaf at the point 4.

It is assumed that the load is perpendicular to the leaf (Fig. 3); giow(x), qup(x) are the load densities on the
lower and upper sides of the leaf. If the multiple-leaf spring is considered then this assumption should be
made only for the lower side of the lowermost leaf, where the load is given a priori. For the other surfaces of
the other leaves this load form follows from the absence of friction and the weakness of bending. We
assume that giow(x), ¢up(x) can be represented in the form of

SG) + ) Fdlx = x), ()

where f(x) > 0 is some piecewise continuous function, which is continuous on the right at x = 0 and on the
left at x > 0; the sum is finite; x; > 0; the concentrated forces F; > 0; J is the Dirac’s delta function. For
the lower side of the lowermost leaf, formula (2) a priori gives the form of loading. For the other surfaces of
the other leaves, formula (2) is used in the following formulation of the problem.

Using (1), the principle of virtual displacements and the standard calculus of variations techniques
(Lanczos, 1962), one can find that

V4
90 = [ G55) o 5) = un(5)) . 3
where
min(x,s)
G(x,s) :/0 a(t)g(t,x)g(z,s)dr 4)

(Green’s function),

o) = [ " cos(p(x) — @() dp, (5)

s, T and p are the variables of integrating. Integral of type |; bc h(s)o(s — s,)ds (which may be contained in (3)
and in the following analogous formulae) is considered to be equal to A(s.) in the cases s, = b or s, = c.

3. The formulation of the problem of the joint spring leaves bending

Consider N > 2 leaves. The length of leaf & is £, > 0 and its bending flexibility is a;(x); | <k <N (Fig. 1).
The sequence ¢; is non-increasing one. The loading with the given density ¢(x) (which is of type (2)) is
applied to the lower side of the leaf 1. The shapes of the leaves are described by the functions y(x)
(1<k<N). It is required to find these functions. In order to solve this problem, it is convenient to
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reformulate it so that to regard the densities f;(x) (1 <k <N — 1) of the forces of interaction between the
leaves k, k + | as the functions sought for. The functions y;(x) are expressed in terms of f;(x) as follows
(these formulae result from (3) and the law of equal action and reaction)

»sz”@pr@w—AMGMMﬁ@w, (6)

where 1 <k <N and it should be considered that /y,; = 0, fy(x) =0, fo(x) = g(x). The functions G;(x,s)
are obtained by substituting a(x) = a;(x) into (4). It is assumed below that the range of index k is
1 <k<N — 1 (unless it is given explicitly). We assume that f;(x) are of type (2); it is an a priori assumption
on the leaves interaction. We introduce the notation 7 (x) = y11(x) — y(x); then using (6) we find

lpya

re(x) = — /0 C Gl ) fir () ds + /0 G, 8) + Grot (v, 5))fils) ds — /0 Genr (6,5 fint (5)ds. (7)

The conditions of unilateral (unbonded) leaves contact may be expressed by the inequalities: r;(x) = 0;
besides, if f;(x) > 0 then r4(x) = 0. Finally we come to the following problem.

Problem. It is required to find f;(x) (0 <x < ¢.,), which are of type (2) and should satisfy the conditions
=0 (fi(x) >0),
{20 (20, ®)

where r;(x) are expressed by (7).

4. The proof of the uniqueness of the problem solution
Theorem 1. The Problem may have only the unique solution.

Proof. Let f;(x), f;(x) be the solutions of the Problem. The functions r(x), 7} (x) correspond to these so-
lutions according to (7). We introduce the notation p,(x) = fi(x) — f;*(x). Since fi(x), f;(x) are of type (2),
p,(x) are also of type (2) but f(x), F; may be negative. We introduce the notation

N-l

=Y [0 - i)

k=1

Then it follows from (8) that £ < 0 (either one of the co-factors in the integral is equal to zero or these co-
factors have different signs). On the other hand, using (4), (7) and introducing the notation

) = [ et omils)as, )
we obtain
o= /0 e+ Y /0 ) U (1) — S ()P + // " a2, () dx]

oy
+/0 ay(x)Jy_;(x)dx. (10)

It follows from (10) that ¢ > 0. Hence, ¢ = 0. Then, if the above-mentioned properties of p,(x) are taken
into account, it can be proved that the functions J;(x) are continuous (the simple proofs using the standard
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methods of mathematical analysis are not adduced). Then it follows from (10) and the equality ¢ = 0 that
Jr(x) = 0. Using (5), (9) and introducing the notation

Hy(x) = / " cos(p(s) — p(x))pg(s) ds,

we obtain

G = [ Hy(s)ds, (11)

X

Taking the above-mentioned properties of p,(x) into account, one can prove that H;(x) are the piecewise
continuous functions, which are continuous on the left for 0 < x < ¢;,; and on the right for x = 0. Then it
follows from (11) and the equality J;(x) = 0 that H;(x) = 0, i.e. (the variable is denoted as 1)

Ly
[ costols) - o(e)pi(s)ds =0 (12
for 0 < 1< 4. Multiplying (12) by ¢'(r) and integrating over x < t < ¢, yields

[ sinots) — otpits)as =0 (13

It follows from (12) and (13) that

L1
/ cos ¢(s)p, (5) ds = 0.
Using this equality and taking the above-mentioned properties of p(x) and ¢(x) into account, one can prove
that p(x) = 0. Hence, fi(x) = f;"(x). This proves Theorem 1. O
5. The analytical solution of the Problem in the simplest special case

Consider the special case: N =2, ¢(x) =0, a;(x) = a; = const., a(x) = a, = const. (two straight uni-
form leaves). It follows from (4) and (5) that in this special case

rs) = as*(3x —5)/6  (x =),
Gi(x,5) {akx2(3s —x)/6 (x<s), (14)
for £k = 1,2. We introduce the notations
_ (=N L= - 4)
qf(,l,&A)_a#Ku_A) YT (15)
1 G} 3 0
o) = s [ Gt [ ot as (16)

M= /yl(s — )q(s)ds > 0. (17)

b
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Theorem 2. The solution fi(x) of the Problem in the above-mentioned special case has the following form:

(@) if M =0 then
ap

Nx) = = aW); (18)
(i) if ®(0) = 0 then
filx) = Fo(x — 4y), (19)
where
3 h
A Zm/o G1 (b2, 5)g(s) ds; (20)
(ii) if @(0) < 0 and M > O then
Fix) = Bd(x — ) + Fo(x — 1) + {al T (0<r<), (1)
0 (A <x<b),
where
0 < A < £, is the root of the equation $(A) =0, (22)
a, b ,
= @ra) b= /A (s — A)g(s)ds, (23)
a b
Rt [ (=94 ds (4)

The expression of type b £ 0 denotes right-hand or left-hand limit. Note that if g(x) in (21) contains the
term of type Fyd(x — 1) then this term is contained in f; (x) (according to non-strict inequality x < A in (21)).

Proof

(1) Since ¢(x) is of type (2), f1(x) is also of type (2). Prove that conditions (8) are satisfied (here and below
for £ = 1). Substituting (18) into (7), one can find that if ¢; = ¢, then r(x) = 0 for 0 <x< ¥, = ¢, and if
£1 > ¢, then

4
ri(x) = —/ Gi(x,8)g(s)ds. (25)
640

In the latter case, using (17) and the condition M = 0, one can prove that g(x) = 0 for ¢, < x < ¥, hence,
it follows from (25) that in this case again r|(x) = 0 for 0 <x < ¢,. Thus, conditions (8) are satisfied in both
above-mentioned cases.

(ii) It follows from (14) and (20) that F; > 0. Hence, f;(x) is of type (2). Prove that conditions (8) are
satisfied. Substituting (19) into (7) and using (14)-(16) and (20), one can prove (by means of direct but
somewhat cumbersome calculations) the following representation of the function r;(x):

arx

arx*(ly — x 3orh H
rl(x):#é(O)—i—T/ d,u/0 ds¥(u,s,0)g(s). (26)

According to (19), the inequality f(x) > 0 may be valid only at x = ¢,. It follows from (26) that
r1(¢,) = 0. Besides, it follows from (26), (15) and the condition ¢(0) > 0 that r(x) = 0 for 0 <x < ¢,. Hence,
conditions (8) are satisfied.
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(ii1) Prove first of all that the value / is defined correctly, i.e. the existence of the root of Eq. (22) (since the
uniqueness of the solution (21) follows from Theorem 1, it is not necessary to prove the uniqueness of the
root). Using (16) and (17) one can prove that &(A) is continuous for 0 < A < ¢, and &(¢, — 0) = M. Since
@(0) < 0 and M > 0, the existence of the root 0 < 4 < ¢, is proved. Prove that f(x) is of type (2). The non-
strict inequality x < 4 in (21) provides the continuity on the left for x > 0 of that part of f(x), which does not
contain delta functions. Further, it follows from (23) that F, > 0, and it follows from (16), (22) and (24) that

aj

= (al + az)(fz - /1)3 /Ho(g2 - S)’q(s) ds. (27)

Hence, F; > 0 and f|(x) is of type (2). Prove that conditions (8) are satisfied. Substituting (21) into (7)
and using (14), (15), (22)—(24) and (27), one can prove the following representation of the function r(x):

0 (0<x< ),
_ ) s u
WD [ [ asris g Gexse).

According to (21), the inequality fi(x) > 0 may be valid only for 0 <x < 1 and at x = ¢,. It follows from
(28) that r(x) =0 for 0<x< 4 and r(¢,) = 0. Besides, it follows from (28) and (15) that »(x) > 0 for
A< x<{,. Hence, conditions (8) are satisfied.

Note: If g(x) = Fyo(x — £») then the conditions (i) and (ii) of Theorem 2 are satisfied simultaneously. O

(28)

rl(x) =

6. An illustration of the solution procedure for a practical case

If a spring with two straight uniform leaves is used as the elastic element of the foot prosthesis then one
of the practical problems is to calculate the deflection d of this elastic element under the given loading
(Rudakov et al., 1997). The results of Section 5 allow one to construct the solution of this practical
problem. In terms of Section 2,

d =y (). (29)

Suppose the loading is uniform:

q(x) = qo = const. (30)
Substituting (30) into the formulation of Theorem 2 and introducing the notation
o=40/0,
we obtain:
(i) if « = 1 then
file) = (31)

(ii) if 0 < 2 <2 — /2 then
_a1qoly (o — 4o+ 6)

fl(x) - 8(01 ¥ az)OC 5(X - 62)7 (32)
(i) if 2 — v2 < o < 1 then
o @ahi(1=2) . o a‘“qoa 0<x< ),
filx) = Wl +a) [(3+2V2)3(x — &) + 6(x — 2)] + {01 +a; (L<x<h) (33)

where 2 = (1 +V/2)6, — V/24;.



3136 M. A. Osipenko et al. | International Journal of Solids and Structures 40 (2003) 3129-3136

Then it follows from (6), (29) and (31)~(33) that

where
ﬁ{o 0 <a<2—V2),
Tl (e =24+ V2 (1 -8+ 6V2— (5+4V2)0] (2—-vV2<a<]).

7. Conclusions

The propounded approach to the investigation of the interaction of spring leaves under joint bending
allows one to understand the bending of two straight uniform leaves in full. It is possible to hope that this
approach will lead to determining the interaction pattern of the leaves in more complicated cases.
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